XFRM Interface Development Notes: Difference between revisions

From Libreswan
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:


* create bugzilla entry for RHEL support.
* create bugzilla entry for RHEL support.
* XFRMi code is compile time option. If the kernel headers do no't support it won't compile. Think RHEL 6 or Debian Weezy.


= Kernel XFRM - related =
= Kernel XFRM - related =

Revision as of 14:26, 19 February 2019

libreswan/pluto design choices

  • allow names ipsec0, ipsec1 ... ipsecx.
  • Should we allow names other than ipsecXX ?
  • initial thought is keep "xfrm interface id" and "xfrm output mark" consistent.
  • interface creation is inside pluto.
  • create bugzilla entry for RHEL support.
  • XFRMi code is compile time option. If the kernel headers do no't support it won't compile. Think RHEL 6 or Debian Weezy.

Kernel XFRM - related

XFRM INTERFACE

Commit cover letter from Steffen 20180612, Merged in 4.19:

https://patchwork.ozlabs.org/cover/928175/

Steffen Klassert June 12, 2018, 7:56 a.m.

This patchset introduces new virtual xfrm interfaces.
The design of virtual xfrm interfaces interfaces was
discussed at the Linux IPsec workshop 2018. This patchset
implements these interfaces as the IPsec userspace and
kernel developers agreed. The purpose of these interfaces
is to overcome the design limitations that the existing
VTI devices have.

The main limitations that we see with the current VTI are the
following:

- VTI interfaces are L3 tunnels with configurable endpoints.
  For xfrm, the tunnel endpoint are already determined by the SA.
  So the VTI tunnel endpoints must be either the same as on the
  SA or wildcards. In case VTI tunnel endpoints are same as on
  the SA, we get a one to one correlation between the SA and
  the tunnel. So each SA needs its own tunnel interface.

  On the other hand, we can have only one VTI tunnel with
  wildcard src/dst tunnel endpoints in the system because the
  lookup is based on the tunnel endpoints. The existing tunnel
  lookup won't work with multiple tunnels with wildcard
  tunnel endpoints. Some usecases require more than on
  VTI tunnel of this type, for example if somebody has multiple
  namespaces and every namespace requires such a VTI.

- VTI needs separate interfaces for IPv4 and IPv6 tunnels.
  So when routing to a VTI, we have to know to which address
  family this traffic class is going to be encapsulated.
  This is a lmitation because it makes routing more complex
  and it is not always possible to know what happens behind the
  VTI, e.g. when the VTI is move to some namespace.

- VTI works just with tunnel mode SAs. We need generic interfaces
  that ensures transfomation, regardless of the xfrm mode and
  the encapsulated address family.

- VTI is configured with a combination GRE keys and xfrm marks.
  With this we have to deal with some extra cases in the generic
  tunnel lookup because the GRE keys on the VTI are actually
  not GRE keys, the GRE keys were just reused for something else.
  All extensions to the VTI interfaces would require to add
  even more complexity to the generic tunnel lookup.

To overcome this, we started with the following design goal:

- It should be possible to tunnel IPv4 and IPv6 through the same
  interface.

- No limitation on xfrm mode (tunnel, transport and beet).

- Should be a generic virtual interface that ensures IPsec
  transformation, no need to know what happens behind the
  interface.

- Interfaces should be configured with a new key that must match a
  new policy/SA lookup key.

- The lookup logic should stay in the xfrm codebase, no need to
  change or extend generic routing and tunnel lookups.

- Should be possible to use IPsec hardware offloads of the underlying
  interface.

Initial xfrmi kernel commits

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f203b76d78092faf248db3f851840fbecf80b40e

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7e6526404adedf079279aa7aa11722deaca8fe2e

XFRM OUTPUT_MARK (required commits to be pulled to RHEL)

Add mask and rename to XFRMA_SET_MARK, Steffen

Initial Commit, Lorenzo

Which mark?

There are wo marks used in the context of IPsec or xfrm in Linux kernel. XFRMA_MARK and XFRMA_SET_MARK(aka XFRMA_OUTPUT_MARK). Now on I use XFRM_OUTPUT_MARK mark which as of 4.20 mean XFRM_SET_MARK/XFRM_SET_MARK_MASK

One line difference between the two. XFRM_OUTPUT_MARK is for routing a packet after XFRM(think as ESP out or Clear text in), while XFRMA_MARK could be seen as routing a clear text packet into xfrm; XFRMA_MARK is a lookup key of SPDB and SADB.

XFRMA_MARK (along with mask) is used inside xfrm code to find policy and satte on for outgoing, clear text, packet Jamal's notes (clear text packet out only. Then I wonder why set XFRMA_MARK on incoming SA? See libreswan commit. What is the use case of it. Is it supposed to copy some mark on the incoming clear to something? I don't thing so yet!

To be clear, both marks are used for routing a packet at different stages of it while to goes through Linux stack and get transformed inside XFRM. or in a more complicated case where a packet get marked as incoming packet to the host the application replies. Now the magic is the incoming packet's mark get copied to related outgoing packet, use case multi homing. While XFRM_OUTPUT_MARK is used for routing ESP packet on the output side and clear text packet on the input side. You see a bit more details on XFRMA_MARK see Jamal's explanation


XFRMA_MARK - mark(u32)/mask(u32). XFRM_OUTPUT_MARK - mark(u32)/[mask(u32). So one difference is for XFRM_OUTPUT_MARK mask is optional as of 4.19, 4.18 did not support mask for OUTPUT_MARK.

IPsec and routing has to share same mark. That why there is mask. One part for IPsec/XFRM and other part for the rest of the system use. XFRM stack should pass on the mark set by the system when correct mask is used. Masked part is opaque to xfrm.

use case of marks

  • Simple use case XFRMI interface.

XFRM_OUTPUT_MARK by libreswan when the the other/peer end is inside the extruded tunnel. In other words. Say /32-to-/32 tunnel without NAT or 0.0.0.0/0 tunnel. Note it is adding rules to rout

ip rule add prio 100 to 192.1.2.23/32 not fwmark 1/0xffffffff lookup 50
ip route add table 50 192.1.2.23/32 dev ipsec0 src 192.1.3.209
  • XFRMI interface and multihoming. Yet to test this. It would bet interesting to test. If it all work the idea is mark on incoming ESP, set by iptable rule, would get copied first to incoming clear packet, then to outgoing clear text packet and finally to the outgoing ESP packet. With XFRMi at every stage there are could routlookup involving fwmark with mark. I wonder if it works. Any one tested it?
  • Simple case IPsec with IP_VTI. Then you can pick any mask.

in libreswan config you set mark=2/0xffffffff. The rest is transparent to users, magic happens.


  • A bit more complicated case VTI and multihoming

Lets say you have two upstreams both route packets to your host. Then you would start to use commands like bellow. If you are familiar with those and use IPse in combination with linux IP_VTI support you may et of XFRMA_MARK (with mask. I will expand this one day.

iptables -t mangle -N MARK-ISP1
iptables -t mangle -A MARK-ISP1 -j MARK --set-mark 1
iptables -t mangle -A MARK-ISP1 -j CONNMARK --save-mark

iptables -t mangle -N MARK-ISP2
iptables -t mangle -A MARK-ISP2 -j MARK --set-mark 2
iptables -t mangle -A MARK-ISP2 -j CONNMARK --save-mark

ip rule add fwmark 1 table ISP1
ip rule add fwmark 2 table ISP2
ip route add table ISP1 192.0.3.0/24 dev eth1 src 192.0.2.0/24
ip route add table ISP2 192.0.3.0/24 dev eth2 src 192.0.22.0/24

I wonder if the incoming ESP packet's mark, say set by iptable before hitting XFRM code, would end up on the outgoing ESP in this case.

Track bugs and related

Fedora support in F29